Use the method of cylindrical shells to find the volume V generated by rotating the region bounded by the given curves about the specified axis.

y=x^2,  x=y^2 about y = - 6.

Respuesta :

Answer:

13.5

Step-by-step explanation:

We are given that two curves and a line

[tex]y=x^2,x=y^2[/tex] about y=-6

[tex]x=\sqrt{y}[/tex]

Height=[tex]\sqrt{y}-y^2[/tex]

Radius=y-(-6)=y+6

Now, we find intersecting points of two curves

[tex]y=(y^2)^2[/tex]

[tex]y=y^4[/tex]

[tex]y^4-y=0[/tex]

[tex]y(y^3-1)=0[/tex]

[tex]y=0[/tex]

[tex]y^3-1=0[/tex]

[tex]y^3=1\implies y=1[/tex]

Now, volume generated by rotating the region by using cylindrical shell method is given by

[tex]V=\int_{a}^{b}2\pi(height)(radius)dy[/tex]

Using the formula

[tex]V=\int_{0}^{1}2\pi(\sqrt{y}-y^2)(y+6)dy[/tex]

[tex]V=\int_{0}^{1}2\pi(y^{\frac{3}{2}}+6\sqrt{y}-y^3-6y^2)dy[/tex]

[tex]V=2\pi[\frac{2}{5}y^{\frac{5}{2}}+4y^{\frac{3}{2}}-\frac{1}{4}y^4-2y^3]^{1}_{0}[/tex]

[tex]V=2\pi(\frac{2}{5}+4-\frac{1}{4}-2)[/tex]

[tex]V=13.5 [/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE