Respuesta :

Answer:

Option (3)

Step-by-step explanation:

From the given figure,

[tex]a_n=a_1+(n-1)d[/tex]

where [tex]a_n[/tex] = nth term of an arithmetic sequence

[tex]a_1[/tex] = first term of the sequence

n = number of term

d = common difference

When n = 1 : [tex]a_1=-1[/tex]

When n = 2 : [tex]a_2=-6[/tex]

common difference 'd' = -6 - (-1) = -5

Formula for the nth term for the given sequence will be,

[tex]a_n=-1+(n-1)(-5)[/tex]

    = -1 - 5n + 5

[tex]a_n[/tex] = 4 - 5n

Now the 12th term of this sequence will be,

[tex]a_{12}=4-5(12)[/tex]

     = 4 - 60

     = -56

Therefore, Option (3) will be the answer.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE