Respuesta :

Answer: [tex](x+10)^2+119=0[/tex]

Step-by-step explanation:

For a quadratic equation, the vertex form is given by : [tex]y=a(x-h)^2+k[/tex], where (h, k) is the vertex.

The given quadratic equation: [tex]x^2 + 20x + 28 = 9[/tex]

Subtract 9 from both sides

[tex]=x^2+20x+19=0[/tex]

compare this to [tex]x^2+bx=c[/tex], and add [tex](\frac{b}{2})^2[/tex] both sides

b= 20

[tex]x^2+20+100+19=-100[/tex]   [(b/2)²=20/2=10]

[tex]\Rightarrow\ x^2+2(x)(10)+10^2+119=0[/tex]

[tex]\Rightarrow\ (x+10)^2+119=0\ \ \ [\because\ (a+b)^2=a^2+b^2+2ab][/tex]

So, the vertex form : [tex](x+10)^2+119=0[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE