Respuesta :
Answer:
1/4
Explanation:
Ти[tex]\neq \lim_{n \to \infty} a_n \lim_{n \to \infty} a_n \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \pi \alpha \alpha \alpha \beta x_{123} \frac{x}{y} \sqrt[n]{x} \sqrt{x} x^{2} \\ \leq \geq x^{2} \geq \sqrt{x} \neq \sqrt{x} \sqrt[n]{x}[/tex]