Answer: k = 4
Step-by-step explanation:
For this division, to determine the value of k, use the Remainder Theorem, which states that:
polynomial p(x) = dividend (x-a) * quotient Q(x) + remainder R(x)
Knowing the degree of quotient is
degree of Q = degree of p(x) - degree of (x-a)
For this case, Q(x) is a third degree polynomial.
Using the theorem:
[tex]x^{4}-3x^{2}+kx-2 = (x-2)(ax^{3}+bx^{2}+cx+d) + 10[/tex]
[tex]x^{4}-3x^{2}+kx-2 = ax^{4} + x^{3}(b-2a)+x^{2}(c-2a)+x(d-2c)-2d+10[/tex]
a = 1
b - 2a = 0 ⇒ b = 2
c - 2b = -3 ⇒ c = 1
-2d + 10 = -2 ⇒ d = 6
d - 2c = k ⇒ k = 4
Therefore, k = 4 and Q(x) = [tex]x^{4} -2x^{2} + 4x + 2[/tex]