Answer:
f'(x)= [tex]\frac{1}{\sqrt{1-x^{2} } }[/tex]
Step-by-step explanation:
As khown the derivative of arcsin(x) is;
f'(x)= [tex]\frac{1}{\sqrt{1-x^{2} } }[/tex]
Answer:
1 /√( 1 - x^2).
Step-by-step explanation:
y = arcsin x
x = sin y
dx/dy = cos y
dy/dx = 1 / cos y
Now cos y = √( 1 - sin^2 y)
but sin y = x so
cos y = √( 1 - x^2).
So dy/dx = 1 / √( 1 - x^2).