Find the equation of the given parabola in vertex and standard form. Describe in words all transformations that have been applied to the graph of y=x^2 to obtain the given graph of the transformed function

Find the equation of the given parabola in vertex and standard form Describe in words all transformations that have been applied to the graph of yx2 to obtain t class=

Respuesta :

Answer:  [tex]a)\ \text{Vertex}:y=-\dfrac{3}{2}(x+1)^2+6[/tex]

                [tex]b)\ \text{Standard}:y=-\dfrac{3}{2}x^2-3x=\dfrac{9}{2}[/tex]

              c) Transformations: reflection over the x-axis,

                                               vertical stretch by a factor of 3/2,

                                               horizontal shift 1 unit to the left,

                                               vertical shift 6 units up

Step-by-step explanation:

Intercept form: y = a(x - p)(x - q)

Vertex form: y = a(x - h)² + k

Standard form: y = ax² + bx + c

We can see that the new vertex is (-1, 6). Use the Intercept form to find the vertical stretch: y = a(x - p)(x - q) where p, q are the intercepts.

p = -3, q = 1, (x, y) = (-1, 6)

a(-1 + 3)(-1 -1) = 6

       a (2)(-2) = 6

                a  = -6/4

                 a = -3/2

a) Input a = -3/2 and vertex (h, k) = (-1, 6) into the Vertex form to get:

[tex]y=-\dfrac{3}{2}(x+1)^2+6[/tex]

b) Input a = -3/2 into the Intercept form and expand to get the Standard form:

[tex]y=-\dfrac{3}{2}(x+3)(x-1)\\\\\\y=-\dfrac{3}{2}(x^2+2x-3)\\\\\\y=-\dfrac{3}{2}x^2-3x+\dfrac{9}{2}[/tex]

c) Use the Vertex form to identify the transformations:

[tex]y=-\dfrac{3}{2}(x+1)^2+6[/tex]

  • a is negative: reflection over the x-axis
  • |a| = 3/2: vertical stretch by a factor of 3/2
  • h = -1: horizontal shift left 1 unit
  • k = +6: vertical shift up 6 units

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE