Respuesta :

Answer:

Option A.

Step-by-step explanation:

The given equation is

[tex]y=-x^3-5x^2-3x+9[/tex]      ...(1)

We need to find the local maximum.

Differentiate the given equation w.r.t. x.

[tex]y=-(3x^{3-1})-5(2x^{2-1})-3(1)+0[/tex]

[tex]y'=-3x^2-10x-3[/tex]       ...(2)

Now, equate y'=0 to find the extrem points.

[tex]-3x^2-10x-3=0[/tex]

[tex]-3x^2-9x-x-3=0[/tex]

[tex]-3x(x+3)-1(x+3)=0[/tex]

[tex]-(3x+1)(x+3)[/tex]

[tex]3x+1=0\Rightarrow x=-\dfrac{1}{3}[/tex]

[tex]x+3=0\Rightarrow x=-3[/tex]

Differentiate (2) w.r.t. x.

[tex]y''=-6x-10[/tex]

For [tex]x=-\dfrac{1}{3}[/tex],

[tex]y''=-6(-\dfrac{1}{3})-10=2-10=-8<0[/tex] maximum

For [tex]x=-3[/tex],

[tex]y''=-6(-3)-10=18-10=8>0[/tex] minimum

So, the given equation has local maximum at x=-1/3 and the maximum value is

[tex]y=-(-\dfrac{1}{3})^3-5(-\dfrac{1}{3})^2-3(-\dfrac{1}{3})+9\approx 9.48[/tex]

The local maximum at (-0.33,9.48).

Hence, the correct option is A.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE