Complete the table. (Round your answers to four decimal places.)
[1/(x + 1)]- (1/9)
lim
X-8
7.9
7.99
7.999
D
8.001
8.01
8.1
2
Use the result to estimate the limit. Use a graphing utility to graph the function to confirm your result. (Round your answer to four decimal places.)
[1/(x+1)] - (1/9)
X-8

Respuesta :

Answer:

See below.

Step-by-step explanation:

We have:

[tex]\displaystyle \lim_{x\to \-8}\left(\frac{1}{1+x}- \frac{1}{9}\right)[/tex]

Simply plug in each value:

When x = 7.9, [tex]\displaystyle \frac{1}{1+x}- \frac{1}{9} \approx 0.0012[/tex]

When x = 7.99, [tex]\displaystyle \frac{1}{1+x}- \frac{1}{9} \approx0.0001[/tex]

When x = 7.999, [tex]\displaystyle \frac{1}{1+x}- \frac{1}{9} \approx0.0000[/tex]

When x = 8.001, [tex]\displaystyle \frac{1}{1+x}- \frac{1}{9} \approx-0.0000[/tex]

When x = 8.01, [tex]\displaystyle \frac{1}{1+x}- \frac{1}{9} \approx-0.0001[/tex]

And when x = 8.1, [tex]\displaystyle \frac{1}{1+x}- \frac{1}{9} \approx-0.0012[/tex]

From this pattern, we can conclude that:

[tex]\displaystyle \lim_{x\to \-8}\left(\frac{1}{1+x}- \frac{1}{9}\right) = 0[/tex]

Since as the limit approaches 8, the value gets smaller and smaller and approaches zero.

Graphing this, we can confirm our answer.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE