Answer:
3x-2y
Step-by-step explanation:
log10^(3x-2y)
We know the base is base 10 since it is not written
log10 10^(3x-2y)
The log10 10 cancels
3x-2y
Answer:
[tex]\huge\boxed{\log10^{3x-2y}=3x-2y}[/tex]
Step-by-step explanation:
[tex]\text{Use}\\\\(1)\log x=\log_{10}x\qquad(x>0)\\\\(2)\log_ab^n=n\log_ab\qquad(a>0;\ a\neq1;\ b>0)\\\\(3)\log_aa=1\qquad(a>0;\ a\neq1)\\\\\log10^{3x-2y}=\underbrace{(3x-2y)\log10}_{(2)}=\underbrace{(3x-2y)\log_{10}10}_{(1)}=\underbrace{(3x-2y)(1)}_{(3)}=3x-2y[/tex]