Which is the equation for a sphere with the center (2,-9,-1) and radius √r? a. (x + 2)2 + (y - 9)2 + ( z - 1)2 = r b. (x - 2)2 + (y + 9)2 + ( z + 1)2 = r c. (x - 2)2 + (y + 9)2 + ( z + 1)2 = √r d. (x + 2)2 + (y - 9)2 + ( z - 1)2 = r2

Respuesta :

Answer: b. [tex](x-2)^2+(y+9)^2+(z+1)^2=r[/tex]

Step-by-step explanation:

The general equation of a sphere is : [tex](x - a)^2 + (y - b)^2+ (z - c)^2 = R^2[/tex], where (a, b, c) represents the center of the sphere, R represents the radius, and x, y, and z are the coordinates of the points on the surface of the sphere.

Given, Center of the sphere =  (2,-9,-1)

Radius = √r

Then, the equation of the sphere would be

[tex](x - 2)^2 + (y - (-9))^2+ (z - (-1))^2 = (\sqrt{r})^2\\\\\Rightarrow\ (x-2)^2+(y+9)^2+(z+1)^2=r[/tex]

Hence, the correct option is b. [tex](x-2)^2+(y+9)^2+(z+1)^2=r[/tex] .

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE