STATS List below are the ages (years) of randomly selected race car drivers. Construct a 95% confidence interval estimate of the mean age of all race car drivers: ages 32, 40, 27, 36, 29, 28

Respuesta :

Answer:

A 95% confidence interval estimate of the mean age of all race car drivers is [26.65 years, 37.35 years].

Step-by-step explanation:

We are given below the ages (in years) of randomly selected race car drivers;

Ages: 32, 40, 27, 36, 29, 28.

Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;

                           P.Q.  =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean age = [tex]\frac{\sum X}{n}[/tex] = [tex]\frac{32+40+27+36+29+28}{6}[/tex] = 32 years

           s = sample standard deviation = [tex]\sqrt{\frac{\sum (X-\bar X)^{2} }{n-1} }[/tex]  = 5.1 years

           n = sample of car drivers = 6

           [tex]\mu[/tex] = population mean age of all race car drivers

Here for constructing a 95% confidence interval we have used a One-sample t-test statistics because we don't know about population standard deviation.

So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-2.571 < [tex]t_5[/tex] < 2.571) = 0.95  {As the critical value of t at 5 degrees of

                                                freedom are -2.571 & 2.571 with P = 2.5%}  

P(-2.571 < [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.571) = 0.95

P( [tex]-2.571 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]2.571 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

P( [tex]\bar X-2.571 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+2.571 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.571 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+2.571 \times {\frac{s}{\sqrt{n} } }[/tex] ]

                                                  = [ [tex]32-2.571 \times {\frac{5.1}{\sqrt{6} } }[/tex] , [tex]32+2.571 \times {\frac{5.1}{\sqrt{6} } }[/tex] ]

                                                  = [26.65, 37.35]

Therefore, a 95% confidence interval estimate of the mean age of all race car drivers is [26.65 years, 37.35 years].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE