Respuesta :
Answer:
The answer is "domain and range are different".
Step-by-step explanation:
Given:
[tex]f(x) = \sqrt{\frac{x+1}{x-1}}\\\\g(x) =\frac{\sqrt{x+1}}{\sqrt{x-1}}\\[/tex]
Solve f(x) to find domain and range:
for element x: R:
⇒ [tex]x \leq -1 \ \ \ and \ \ \ x > 1[/tex] range:
[tex]for \ \ f(x) \times element : 0 \leq f(x)< 1 \ \ \ or \ \ f(x)>1[/tex]
[tex]g(x) =\frac{\sqrt{x+1}}{\sqrt{x-1}}\\[/tex]
Solve for domain:
⇒ [tex]\ when \ x \ element \ R: \ \ \ x>1[/tex]
Solve for range:
⇒ [tex]g(x) \times element[/tex] R : [tex]g(x)>1[/tex]
So, the value of the method f(x) and g(x) (range and domain) were different.
Functions f(x) and g(x) are not the same because they do not have the same domain
The functions are given as:
[tex]\[f(x) = \sqrt{\dfrac{x+1}{x-1}}\quad\text{and}\quad g(x) = \dfrac{\sqrt{x+1}}{\sqrt{x-1}}.\][/tex]
Next, we plot the graphs of functions f(x) and g(x).
From the graph (see attachment), we have:
The domain of f(x) is [tex]\[x \le -1}\quad\text{and}\quad x > 1[/tex]
The domain of g(x) is [tex]x > 1[/tex]
Hence, functions f(x) and g(x) are not the same because they do not have the same domain
Read more about function domain at:
https://brainly.com/question/1770447
