Respuesta :

Answer:

(27,2) and (243,18)

(63,9) and (84,12)

(45,15) and (60,20)

(27,12) and (72,32)

(15,30) and (20,40)

(12,32) and (18,48)

(18,63) and (24,84)

Step-by-step explanation:

Formula for slope of a line is

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

a) (15,30) and (20,40).

[tex]m_a=\dfrac{40-30}{20-15}=\dfrac{10}{5}=2[/tex]

Similarly find the slope of other lines.

b) (12,32) and (18,48).

[tex]m_b=\dfrac{48-32}{18-12}=\dfrac{16}{6}=2.67[/tex]

c) (27,12) and (72,32).

[tex]m_c=\dfrac{32-12}{72-27}=\dfrac{20}{45}=0.44[/tex]

d) (45,15) and (60,20).

[tex]m_d=\dfrac{20-15}{60-45}=\dfrac{5}{15}=0.33[/tex]

e) (27,2) and (243,18).

[tex]m_e=\dfrac{18-2}{243-27}=\dfrac{16}{216}=0.074[/tex]

f) (18,63) and (24,84).

[tex]m_f=\dfrac{84-63}{24-18}=\dfrac{21}{6}=3.5[/tex]

g) (63,9) and (84,12).

[tex]m_g=\dfrac{12-9}{84-63}=\dfrac{3}{21}=0.143[/tex]

After arranging the slopes in increasing order, we get

[tex]m_e<m_g<m_d<m_c<a_a<m_b<m_f[/tex]

So, required arrangement of ordered pairs is

(27,2) and (243,18)

(63,9) and (84,12)

(45,15) and (60,20)

(27,12) and (72,32)

(15,30) and (20,40)

(12,32) and (18,48)

(18,63) and (24,84)

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE