A magazine provided results from a poll of 500500 adults who were asked to identify their favorite pie. Among the 500500 ​respondents, 1414​% chose chocolate​ pie, and the margin of error was given as plus or minus±33 percentage points. Given specific sample​ data, which confidence interval is​ wider: the 9999​% confidence interval or the 8080​% confidence​ interval? Why is it​ wider?

Respuesta :

Answer:

99% confidence interval is wider as compared to the 80% confidence interval.

Step-by-step explanation:

We are given that a magazine provided results from a poll of 500 adults who were asked to identify their favorite pie.

Among the 500 respondents, 14​% chose chocolate​ pie, and the margin of error was given as plus or minus ±3 percentage points. 

The pivotal quantity for the confidence interval for the population proportion is given by;

                            P.Q.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion of adults who chose chocolate​ pie = 14%

            n = sample of adults = 500

            p = true proportion

Now, the 99% confidence interval for p =  [tex]\hat p \pm Z_(_\frac{\alpha}{2}_) \times \sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex]

Here, [tex]\alpha[/tex] = 1% so  [tex](\frac{\alpha}{2})[/tex] = 0.5%. So, the critical value of z at 0.5% significance level is 2.5758.

Also, Margin of error = [tex]Z_(_\frac{\alpha}{2}_) \times \sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex]  = 0.03 for 99% interval.

So, 99% confidence interval for p  =  [tex]0.14 \pm2.5758 \times \sqrt{\frac{0.14(1-0.14)}{500} }[/tex]

                                                        = [0.14 - 0.03 , 0.14 + 0.03]

                                                        = [0.11 , 0.17]

Similarly, 80% confidence interval for p  =  [tex]0.14 \pm 1.2816 \times \sqrt{\frac{0.14(1-0.14)}{500} }[/tex]

Here, [tex]\alpha[/tex] = 20% so  [tex](\frac{\alpha}{2})[/tex] = 10%. So, the critical value of z at 10% significance level is 1.2816.

Also, Margin of error = [tex]Z_(_\frac{\alpha}{2}_) \times \sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex]  = 0.02 for 80% interval.

So, 80% confidence interval for p  =  [0.14 - 0.02 , 0.14 + 0.02]

                                                           =  [0.12 , 0.16]

Now, as we can clearly see that 99% confidence interval is wider as compared to 80% confidence interval. This is because more the confidence level wider is the confidence interval and we are more confident about true population parameter.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE