Respuesta :
Answer:
The coordinates of the midpoint of the segment are (-5.5,0,-8)
Step-by-step explanation:
In this question, we are tasked with calculating the midpoint of the segment PQ.
To calculate this, we employ the use of a mathematical formula as follows;
The coordinate of the midpoint are = {(x1+x2)/2, (y1+y2)/2 , (z1+ z2)/2}
Thus we have;
{(-7-4)/2, (3-3)/2 , (-7-9)/2} = (-11/2, 0/2, -16/2)
= (-5.5,0,-8)
Answer:
[tex] P_x= -7, P_y = 3, P_z= -7[/tex]
[tex] Q_x= -4, P_y = -3, P_z= -9[/tex]
Replacing we got:
[tex] x= \frac{-7 -4}{2}= -\frac{11}{2}[/tex]
[tex] y = \frac{3-3}{2}=0[/tex]
[tex] z =\frac{-7-9}{2}= -8[/tex]
And then the midpoint would be:
[tex] M= (-\frac{11}{2}, 0,-8)[/tex]
Step-by-step explanation:
We have the following two points P(-7,3,-7) and Q(-4,-3,-9) and the midpoint for this case is given by this:
[tex] x= \frac{P_x +Q_x}{2}[/tex]
[tex] y= \frac{P_y +Q_y}{2}[/tex]
[tex] z= \frac{P_z +Q_z}{2}[/tex]
And from the problem given we have:
[tex] P_x= -7, P_y = 3, P_z= -7[/tex]
[tex] Q_x= -4, P_y = -3, P_z= -9[/tex]
Replacing we got:
[tex] x= \frac{-7 -4}{2}= -\frac{11}{2}[/tex]
[tex] y = \frac{3-3}{2}=0[/tex]
[tex] z =\frac{-7-9}{2}= -8[/tex]
And then the midpoint would be:
[tex] M= (-\frac{11}{2}, 0,-8)[/tex]