HELP PLS>>> The vector (3, - 7) ) is rotated by an angle of (3pi)/4 radians and then reflected across the y-axis. If the resulting vector is [a/b], then a=__ and b=__

Respuesta :

Answer:

[tex]a \approx -2.826[/tex], [tex]b \approx 7.072[/tex]

Step-by-step explanation:

First, the vector must be transformed into its polar form:

[tex]r = \sqrt{3^{2}+ (-7)^{2}}[/tex]

[tex]r \approx 7.616[/tex]

[tex]\theta \approx 2\pi - \tan^{-1}\left(\frac{7}{3} \right)[/tex]

[tex]\theta \approx 1.629\pi[/tex]

Let assume that vector is rotated counterclockwise. The new angle is:

[tex]\theta' = \theta + \frac{3\pi}{4}[/tex]

[tex]\theta' = 2.379\pi[/tex]

Which is coterminal with [tex]\theta'' = 0.379\pi[/tex]. The reflection across y-axis is:

[tex]\theta''' = \pi - \theta''[/tex]

[tex]\theta''' = 0.621\pi[/tex]

The equivalent vector in rectangular coordinates is:

[tex]a = 7.616\cdot \cos 0.621\pi[/tex]

[tex]a \approx -2.826[/tex]

[tex]b = 7.616\cdot \sin 0.621\pi[/tex]

[tex]b \approx 7.072[/tex]

Answer:  a = -2.83 and b = 7.07.

Step-by-step explanation: I got this correct on Edmentum.

Also, to get the answer you first multiply [tex]\left[\begin{array}{ccc}cos(\frac{3\pi }{4}) &(-sin\frac{3\pi }{4}) \\sin(\frac{3\pi }{4}) &cos(\frac{3\pi }{4}) \end{array}\right] by \left[\begin{array}{ccc}3\\-7\end{array}\right][/tex]

The you multiply the answer which is [tex]\left[\begin{array}{ccc}2\sqrt{2} \\5\sqrt{2} \end{array}\right][/tex]  [tex]by\ \left[\begin{array}{ccc}-1&0\\0&1\end{array}\right][/tex] then you get the answer [tex]\left[\begin{array}{ccc}-2\sqrt{2} \\5\sqrt{2} \end{array}\right][/tex] or  -2.83 and 7.07. You can use a calculator like the one on ma th wa y to make multiplication easier, but when you do multiply always  put the 2x2 equation before the 2x1 to get another vector matrix.

Ver imagen elpink25
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE