Using the following triangle, write a proof to verify that sinA/a=sinC/c

Write two different expressions for h and set the expressions equal to each other

Using the following triangle write a proof to verify that sinAasinCc Write two different expressions for h and set the expressions equal to each other class=

Respuesta :

Answer:

Proved: [tex]c\sin A=a\sin C\Rightarrow \frac{\sin A}{a}=\frac{\sin C}{c}[/tex]

Step-by-step explanation:

Given: A triangle

To prove: [tex]\frac{\sin A}{a}=\frac{\sin C}{c}[/tex]

Solution:

Trigonometry is a branch of mathematics that explains relationship between sides and angles of the triangle.

Sine of angle = side opposite to the angle / hypotenuse

In ΔADB,

[tex]\sin A=\frac{BD}{AB}=\frac{h}{c}\\\Rightarrow h=c\sin A\,\,\,(i)[/tex]

In ΔBDC,

[tex]\sin C=\frac{BD}{BC}=\frac{h}{a}\\\Rightarrow h=a\sin C\,\,\,(ii)[/tex]

From equations (i) and (ii),

[tex]c\sin A=a\sin C\\\frac{\sin A}{a}=\frac{\sin C}{c}[/tex]

Hence proved

Ver imagen berno
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE

Otras preguntas