Describe how multiplying all the linear dimensions of a cone by one
fourth affects the volume of the solid. *

Answer:[tex]\frac{1}{64}^{th}[/tex]
Step-by-step explanation:
Given
Suppose V is the original volume of cone having r as radius and h as height
If we multiply all the linear dimensions of ac one by [tex]\frac{1}{4}^{th}[/tex]
the [tex]r'=\frac{r}{4}[/tex]
[tex]h'=\frac{h}{4}[/tex]
Therefore new volume is
[tex]V'=\frac{1}{3}\pi r'^2h'[/tex]
[tex]V'=\frac{1}{3}\pi (\frac{r}{4})^2(\frac{h}{4})[/tex]
[tex]V'=\frac{1}{64}\times \frac{1}{3}\pi r^2h[/tex]
[tex]V'=\frac{V}{64}[/tex]
So new volume becomes [tex]\frac{1}{64}^{th}[/tex] of the original one