Answer:
The refraction angle of the light in the liquid is 8.40 degrees.
Explanation:
Given:
A ray of light passing through air to liquid.
Air is medium 1 and liquid is medium 2.
Angle of incidence [tex](\theta_1)[/tex] = 13°
Refractive index, [tex](n_2)[/tex] = 1.54
We have to find the angle of refraction:
Let the angle of refraction be "[tex]\theta_2[/tex]" .
Formula to be used:
⇒ [tex]n_1\times sin(\theta_1) =n_2\times sin(\theta_2)[/tex]
Note:
Index of refraction of air [tex](n_1)[/tex] = 1
Accordingly:
Using Snell's law and plugging the values.
⇒ [tex]n_1\times sin(\theta_1) =n_2\times sin(\theta_2)[/tex]
⇒ [tex]1\times sin(13) =1.54\times sin(\theta_2)[/tex]
⇒ [tex]\frac{1\times sin(13)}{1.54} = sin(\theta_2)[/tex]
⇒ [tex]\frac{1\times 0.2249}{1.54} = sin(\theta_2)[/tex] ...sin(13) =0.2249
⇒ [tex]\theta_2=sin^-^1(\frac{0.2249}{1.54})[/tex]
⇒ [tex]\theta_2=sin^-^1(0.145)[/tex]
⇒ [tex]\theta_2=8.3974[/tex] degrees.
⇒ [tex]\theta_2 = 8.40[/tex] degrees ...Rounded to 2 decimal place.
The refraction angle of the light in the liquid is 8.40 degrees.