Respuesta :

Given:

The volume of the sphere = 12348π in³

To find the radius of the sphere.

Formula

The volume of a sphere of radius r is

[tex]V = \frac{4}{3} \pi r^{3}[/tex]

According to the problem,

[tex]\frac{4}{3} \pi r^{3} = 12348\pi[/tex]

Eliminating π from both the side.

or, [tex]\frac{4}{3} r^{3}= 12348[/tex]

or, [tex]r^{3}=\frac{(12348)(3)}{4}[/tex]

or, [tex]r^{3}=9641[/tex]

or, [tex]r=\sqrt[3]{9261}[/tex]

or, [tex]r=21[/tex]

Hence,

The radius of the sphere is 21 inches.

Answer:

21 inches

Step-by-step explanation:

The volume of a sphere is given by

V = 4/3 pi r^3

We know the volume

12348 pi = 4/3 pi r^3

Divide each side by pi

12348 pi/pi = 4/3 pi r^3 /pi

12348  = 4/3 r^3

Multiply each side by 3/4

12348 *3/4 = 4/3*3/4 r^3

9261 = r^3

Take the cubed root of each side

9261^ (1/3 ) = r^3 ^1/3

21 =r

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE