The sum of the areas of two rectangles is 212 m². The second rectangle is 12 m² smaller than three times the first rectangle. What are the areas of the rectangles?​

Respuesta :

Given:

Given that the sum of the areas of two rectangles is 212 m². The second rectangle is 12 m² smaller than three times the first rectangle.

We need to determine the areas of the two rectangles.

Equations of the two rectangles:

Let a₁ denote the area of the first rectangle.

Let a₂ denote the area of the second rectangle.

The equations of the two rectangles is given by

[tex]a_1+a_2=212[/tex]  and  [tex]a_2=3a_1-12[/tex]

Areas of the two rectangles:

The areas of the two rectangles can be determined using substitution method.

Thus, substituting [tex]a_2=3a_1-12[/tex] in the equation [tex]a_1+a_2=212[/tex], we get;

[tex]a_1+3a_1-12=212[/tex]

       [tex]4a_1-12=212[/tex]

               [tex]4a_1=224[/tex]

                 [tex]a_1=56[/tex]

Thus, the area of the first rectangle is 56 m²

Substituting [tex]a_1=56[/tex] in the equation [tex]a_2=3a_1-12[/tex], we get;

[tex]a_2=3(56)-12[/tex]

[tex]a_2=168-12[/tex]

[tex]a_2=156[/tex]

Thus, the area of the second rectangle is 156 m²

Hence, the area of the two rectangles are 56 m² and 156 m²

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE