It is proved that [tex]\sin x+\sin x\tan^2x=\tan x\sec x[/tex].
Important information:
- The given identity is [tex]\sin x+\sin x\tan^2x=\tan x\sec x[/tex].
Trigonometric Identity:
We have,
[tex]\sin x+\sin x\tan^2x=\tan x\sec x[/tex]
Taking out the common factor.
[tex]\sin x(1+\tan^2x)=\tan x\sec x[/tex]
Using the identity [tex]1+\tan^2x=\sec^2x[/tex], we get
[tex]\sin x(\sec^2x)=\tan x\sec x[/tex]
Using the identity [tex]\sec x=\dfrac{1}{\cos x}[/tex], we get
[tex]\sin x\cdot \dfrac{1}{\cos^2x}=\tan x\sec x[/tex]
Rewrite the above identity.
[tex]\dfrac{\sin x}{\cos x}\cdot \dfrac{1}{\cos x}=\tan x\sec x[/tex]
Using the identities [tex]\tan x=\dfrac{\sin x}{\cos x}, \sec x=\dfrac{1}{\cos x}[/tex], we get
[tex]\tan x\sec x=\tan x\sec x[/tex]
Hence proved.
Find out more about 'Trigonometric Identity' here:
https://brainly.com/question/11049559