Answer:
n=42 adult men
Step-by-step explanation:
-The minimum sample size to get a desired margin of error, E is calculated using the formula:
[tex]n\geq( \frac{z\sigma}{E})^2[/tex]
-Given that [tex]\sigma=7.5, \ \ E=3\ , \ z_{0.005}=2.58[/tex], we can substitute to solve for n in the above formula:
[tex]n\geq (\frac{z\sigma}{E})^2\\\\\therefore n=(\frac{z_{\alpha/2}\sigma}{E})^2\\\\=(\frac{2.58\times7.5}{3})^2\\\\=41.6025\approx42[/tex]
Hence, the desired minimum sample size, n is 42 adult men.