Respuesta :
Hooke's law states that F = -kx, so
k = - F/x = - ma / x = - 2.6kg · (-9.8m/s²) / (0.041m) = 621 N/m ← (a)
(b) f = (1/2π) · sqrt(k/m) = (1/2π) · sqrt(621N/m / 2.6kg) = 2.46/s = 2.46Hz
Amplitude is simply 2.1cm
k = - F/x = - ma / x = - 2.6kg · (-9.8m/s²) / (0.041m) = 621 N/m ← (a)
(b) f = (1/2π) · sqrt(k/m) = (1/2π) · sqrt(621N/m / 2.6kg) = 2.46/s = 2.46Hz
Amplitude is simply 2.1cm
Answer:
a.735 N/m
b.Amplitude=0.025 m
frequency=2.63 Hz
Step-by-step explanation:
We are given that
Mass of fish =2.7 kg
1 m=100 cm
x=3.6 cm=[tex]\frac{3.6}{100}=0.036 m[/tex]
a.We have to find the value of k.
We know that
[tex]F=-kx[/tex]
[tex]mg=-kx[/tex]
[tex]g=9.8 m/s^2[/tex]
[tex]k=\frac{mg}{x}=\frac{2.7\times 9.8}{0.036}[/tex]
[tex]k=735 N/m[/tex]
b.We have to find the amplitude and frequency of vibration if the fish pulled down 2.5 cm more and released.
Amplitude=[tex]\frac{2.5}{100}=0.025 m[/tex]
Frequency=[tex]\frac{1}{2\pi}\sqrt{\frac{k}{m}}[/tex]
Substitute the values then we get
Frequency=[tex]\frac{1}{2\pi}\sqrt{\frac{735}{2.7}}[/tex]
We know that [tex]\pi=3.14[/tex]
Frequency=[tex]\frac{1}{2\cdot 3.14}\sqrt{\frac{735}{2.7}}=2.63 Hz[/tex]
Hence, frequency of vibration=2.63 Hz