Respuesta :

Answer:(

( x - 0)^2 + (y - 2)^2 = 40

Step-by-step explanation:

We are asked to find the equation of a circle

Step 1: find the radius

( x - a) ^2 + ( y - b) ^2 = r^2

(a, b) - center of the circle

(x, y) - any point on the circle

r^2 - radius of the circle

Using the center

( a, b) = ( 0 , 2)

(x , y) = (6 , 0)

(a, b) = (0 , 2)

a = 0

b = 2

Inserting the values given into the equation

( x - a)^2 + ( y - b) ^2 = r^2

( x - 0)^2 + (y - 2)^2 = r^2

Step 2: sub (x, y) = ( 6 , 0)

x = 6

y = 0

( 6 - 0)^2 + ( 0 - 2)^2 = r^2

6^2 + (-2)^2 = r^2

36 + 4 = r^2

40 = r^2

Step 3: sub the radius into the equation

(x - 0)^2 + ( y -2)^2 = r^2

( x - 0)^2 + (y - 2)^2 = 40

The equation of the circle is

( x - 0)^2 + ( y - 2)^2 = 40

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE