In the titration of 238.0 mL of a 5.60×10-2 M solution of acid H3A (Ka1 = 1.0×10-3, Ka2 = 5.0×10-8, Ka3 = 2.0×10-12), calculate the volume of 2.90 M NaOH required to reach the following pH values. pH = 9.50 Volume required = mL pH = 4.70 Volume required = mL

Respuesta :

Answer:

When pH = 9.50 ; Volume = 14.8 L

When pH = 4.70 ; Volume = 4.51 L

Explanation:

We all know that:

[tex]pKa = -logKa[/tex]

So let us first calculate the pKa values of the following Ka:

Given that:

Ka1 = 1.0×10⁻³

Ka2 = 5.0×10⁻⁸

Ka3 = 2.0×10⁻¹²

For [tex]pKa_1[/tex] ; we have [tex]-logKa_1[/tex]

= [tex]-log(1.0*10^{-3})[/tex]

= 3.00

[tex]pKa_2 = -logKa_2[/tex]

= [tex]-log(5.0*10^{-3})[/tex]

= 7.30

[tex]pKa_3 = -logKa_3[/tex]

= [tex]-log(2.0*10^{-12})[/tex]

= 11.70

At pH = 4.70:

The pH (4.70) is closer to [tex]pKa_1[/tex] than [tex]pKa_2[/tex] and [tex]pKa_3[/tex].

However, the only important pKa for the dissociation of the acid will be directed towards only  [tex]pKa_1[/tex]

So: At pH = 4.70

-log [tex][H_3O^+][/tex] = pH = 4.70

[tex][H_3O^+] = 10^{-4.70}[/tex]

[tex]H_3A_{(aq)}[/tex]      [tex]+[/tex]     [tex]H_2O_{(l)}[/tex]     ⇄     [tex]H_2A^-}_{(aq)}[/tex]     [tex]+[/tex]     [tex]H_3O^+_{(aq)}[/tex]

[tex]Ka_1= \frac{[H_2A^-][H_3O^+]}{[H_3A]}[/tex]

[tex]1.0*10^{-3}= \frac{[H_2A^-][H_3O^+]}{[H_3A]}[/tex]

[tex]\frac{1.0*10^{-3}}{[H_3O^+]}= \frac{[H_2A^-]}{[H_3A]}[/tex]

where; [tex][H_3O^+] = 10^{-4.70}[/tex]

so, we have:

[tex]\frac{1.0*10^{-3}}{[10^{-4.70}]}= \frac{[H_2A^-]}{[H_3A]}[/tex]

[tex]\frac{[H_2A^-]}{[H_3A]}= 10^{1.7}[/tex]

[tex]\frac{[H_2A^-]}{[H_3A]}= 50.12[/tex]

Given that;

283.0 mL of [tex]5.60*10^{-2}M[/tex] solution is given:

Then ; 283.0 mL = 0.283 L

However;

[tex]n_{(H_2A^-)} + n_{(H_3A)[/tex] = [tex]0.283[/tex] [tex]*5.60*10^{-2}M[/tex]

= 0.013328

= [tex]1.3328*10^{-2} M[/tex]

[tex]n_{H_2A^-}+ \frac{n_{H_2A^-}}{50.12} = 1.3328*10^{-2}[/tex]

[tex]n_{H_2A^-}= \frac{1.3328*10^{-2}}{(1+\frac{1}{50.12} )}[/tex]

= 0.01307 mole

moles of NaOH required to convert [tex]H_3A[/tex] to [tex]H_2A^-[/tex]  i.e [tex](n_{H_2A^-})[/tex]

= [tex]1.307*10^{-2}moles[/tex]

Finally; the volume of NaOH required = [tex]\frac{1.307*10^{-2}}{2.90}[/tex]

= 0.004507

= 4.51 mL

When pH = 4.70 ; Volume = 4.51 L

When pH = 9.50

We try to understand that the average of [tex]pKa_2[/tex] and [tex]pKa_3[/tex] yields 9.50

i.e [tex]\frac{7.30+11.70}{2}[/tex]

=  [tex]\frac{19}{2}[/tex]

= 9.50

Here; virtually all, [tex]H_3A[/tex]  is in [tex]H_2A^-[/tex]  form;

SO; the moles of NaOH required to convert [tex]H_3A[/tex] to [tex]H_2A^-[/tex] will be:

= 2 × initial  [tex]H_3A[/tex] = volume of NaOH × 1.8 M

= 2 × 1.3328 × 10⁻² mol = Volume  of NaOH × 1.8 M

Volume  of NaOH  = [tex]\frac{2*1.3328*10^{-2}}{1.8}[/tex]

= 0.1481 L

= 14.8 L

When pH = 9.50 ; Volume = 14.8 L

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE