Respuesta :

Answer:

The answer to your question is    y = 3/2x + 5/2      

Step-by-step explanation:

Data

P (-1, 1)

⊥ -2x - 3y - 5 = 0

Process

1.- Find the slope of the original line

           -2x - 3y - 5 = 0

                  -3y = 2x + 5

                     y = -2/3x - 5/3

Slope = -2/3

2.- Find the slope of the new line

Slope = 3/2

3.- Find the equation of the line

          y - y1 = m(x - x1)

-Substitution

          y - 1 = 3/2(x + 1)

-Simplification

          y - 1 = 3/2x + 3/2

             y  = 3/2x + 3/2 + 1

-Result

              y = 3/2x + 5/2                    

Answer:

y = [tex]\frac{3}{2}[/tex]x + [tex]\frac{5}{2}[/tex]

Step-by-step explanation:

1. Put the given equation in Y = mx + b form

-2x-3y-5=0

-2x-5=3y

-2/3x - 5/3=y

2. Since We know that the slope of the given line is perpendicular, therefore the slope of the new line is the negative recipricol

m = 3/2 (slope of new line)

3. Find your b value by subbing in the points (-1,1)

y=mx + b

1= 3/2 (-1) + b

1= -3/2 +b

1+ 3/2 = b

5/2= b

4. write your equation

y = 3/2 x + 5/2

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE