Answer:
(a)23 (b)90 (c)3
Step-by-step explanation:
The equation for the line of best fit for this situation is given as
[tex]y=\frac{3}{10}x+8[/tex]
where x=average temperature in degrees
y=average number of hot dogs she sold,
(a) The expected number of hot dogs sold when the temperature is 50° would be___hot dogs.
When x=50°
[tex]y=\frac{3}{10}X50+8=15+8=23[/tex]
When the temperature is 50°, the expected number of hot dogs sold would be 23.
(b)If the vendor sold 35 hot dogs, the temperature is expected to be ___degrees.
If y=35
[tex]35=\frac{3}{10}x+8\\35-8=\frac{3}{10}x\\27=\frac{3}{10}x[/tex]
Multiply both sides by 10/3
[tex]27 X \frac{10}{3}= \frac{3}{10}x X \frac{10}{3}\\x=90^{0}[/tex]
If the vendor sold 35 hot dogs, the temperature is expected to be 90 degrees.
(c) Based on the line of best fit, for every 10-degree increase in temperature, she should sell 3 more hot dogs.