Respuesta :
Answer : The concentration of [tex]H_4IO_6^-[/tex] at equilibrium is, 0.00154 M
Explanation :
First we have to calculate the diluted concentration.
[tex]M_1V_1=M_2V_2[/tex]
where,
[tex]M_1\text{ and }V_1[/tex] are the initial molarity and volume of [tex]NaIO_4[/tex].
[tex]M_2\text{ and }V_2[/tex] are the final molarity and volume of diluted [tex]NaIO_4[/tex].
We are given:
[tex]M_1=0.909M\\V_1=25.0mL\\M_2=?\\V_2=500.0mL[/tex]
Putting values in above equation, we get:
[tex]0.909M\times 25.0mL=M_2\times 500.0mL\\\\M_2=0.0454M[/tex]
Now we have to calculate the concentration of [tex]H_4IO_6^-[/tex] at equilibrium.
The given chemical reaction is:
[tex]IO_4^-(aq)+2H_2O(l)\rightleftharpoons H_4IO_6^-(aq)[/tex]
Initial conc. 0.0454 0
At eqm. (0.0454-x) x
The expression for equilibrium constant is:
[tex]K_c=\frac{[H_4IO_6^-]}{[IO_4^-]}[/tex]
Now put all the given values in this expression, we get:
[tex]3.5\times 10^{-2}=\frac{(x)}{(0.0454-x)}[/tex]
x = 0.00154 M
Thus, the concentration of [tex]H_4IO_6^-[/tex] at equilibrium is, 0.00154 M
The concentration of [tex]H_4IO_6^-[/tex] at equilibrium is 0.00154 M.
We can find the concentration or volume of the concentrated or dilute solution using the equation:
- [tex]M_1V_1=M_2V_2[/tex]
where,
[tex]M_1 and V_1[/tex] are the initial molarity and volume of [tex]NaIO_4[/tex].
[tex]M_2 and V_2[/tex] are the final molarity and volume of diluted [tex]NaIO_4[/tex] .
Given:
M₁=0.909M
V₁=25.0mL
V₂=500.0mL
To find:
M₂=?
On substituting the values in the above formula:
[tex]M_1V_1=M_2V_2\\\\M_2=\frac{M_1V_1}{V_2}\\\\ M_2=\frac{0.909*25}{500} \\\\M_2=0.0454M[/tex]
In order to calculate the concentration of [tex]H_4IO_6^-[/tex] at equilibrium:
The given chemical reaction:
[tex]IO^{-4}(aq)+2H_2O(l)[/tex] ⇄ [tex]H_4IO^{-6}(aq)[/tex]
Initial conc. 0.0454 0
At ⇄ (0.0454-x) x
In order to find equilibrium constant:
[tex]k_c=\frac{[H_4IO^{-6}]}{[IO^{-4}]} \\\\3.5*10^{-2}=\frac{x}{0.0454-x} \\\\x=0.00154M[/tex]
Thus, the concentration of [tex]H_4IO_6^-[/tex] at equilibrium is 0.00154 M.
Find more about "Equilibrium constant" here:
brainly.com/question/4516437