Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Rewrite the rational expression 2x^3-7x^2+6x-9/x-3 in the form q(x)+r(x)/b(x) in nikki. Then match q(x), r(x), and b(x) to the correct expressions.​

Respuesta :

Answer:

The given expression can be written in the form [tex]q(x)+\frac{r(x)}{b(x)}[/tex] as [tex](2x^2-x+3)+\frac{0}{x-3}[/tex] where  q(x)=[tex]2x^2-x+3[/tex] , r(x)=0 and b(x)=x-3

Step-by-step explanation:

Given rational expression is [tex]\frac{2x^3-7x^2+6x-9}{x-3}[/tex]

To rewrite the given rational expression in the given form  and match their correct expressions:

Rewrite the given rational expression [tex]\frac{2x^3-7x^2+6x-9}{x-3}[/tex] in the form of [tex]q(x)+\frac{r(x)}{b(x)}[/tex] where q(x) is the quotient, r(x) is the remainder and b(x) is the divisor.

Now solve the given expression by using Synthetic division, we get

Since x-3 is a factor for [tex]2x^3-7x^2+6x-9[/tex]

Therefore b(x)=x-3

3_|   2     -7     6     -9

       0      6    -3      9

   ------------------------------------

      2      -1       3      0

  ------------------------------------

Therefore we have quadratic equation [tex]2x^2-x+3=0[/tex]

q(x)=[tex]2x^2-x+3[/tex]

Remainder is 0

Therefore r(x)=0

Therefore we can write in the form as [tex](2x^2-x+3)+\frac{0}{x-3}[/tex]

It is in the form of [tex]q(x)+\frac{r(x)}{b(x)}[/tex]

Therefore the given expression can be written in the form [tex]q(x)+\frac{r(x)}{b(x)}[/tex] as [tex](2x^2-x+3)+\frac{0}{x-3}[/tex] where  q(x)=[tex]2x^2-x+3[/tex] , r(x)=0 and b(x)=x-3

Answer:

whats the answer fo q(x)

Step-by-step explanation:

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE