Respuesta :

Answer:

The answer to your question is Yes, the point P lies on the circle

Step-by-step explanation:

Data

P (2[tex]\sqrt{3}[/tex], 2)

Center (0, 0)

Q (0, -4)

Process

1.- Find the radius of the circle

dCQ = [tex]\sqrt{(0-0)^{2}+ (-4 + 0)^{2}}[/tex]

dCQ = [tex]\sqrt{0^{2} + (-4)^{2}}[/tex]

dCQ = [tex]\sqrt{16}[/tex]

dCQ = 4

2.- Find the equation of the circle

    (x - 0)² + (y - 0)² = 4²

-Simplification

           x² + y² = 16

3.- Substitute P in the equation of the circle

          (2[tex]\sqrt{3}[/tex])² + (2)² = 16

           4(3) + 4 = 16

               12 + 4 = 16

                     16 = 16

4.- Conclusion

The point (2[tex]\sqrt{3}[/tex], 2) lies on the circle because when we evaluate the equation of the circle with this point, we get the length of the radius.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE