Answer:
Explanation:
Given :
Magnetic field [tex]B = 3 \times 10^{-7} T[/tex]
Area of coil [tex]A = 5000 m^{2}[/tex]
Average induced emf [tex]= 120V[/tex]
The magnetic flux Φ = [tex]N BA\cos \theta[/tex]
Where [tex]N=[/tex] No. of loop
From the faraday's law of electromagnetic induction,
Induced emf = [tex]-\frac{d\phi}{dt}[/tex]
Where minus sign represent lenz law.
[tex]= - \frac{dNBA \cos\theta}{dt}[/tex]
[tex]= N BA \sin \theta[/tex]
Here given in question [tex]\theta = 90[/tex], so [tex]\sin90 = 1[/tex]
Induced emf = [tex]NBA[/tex]
[tex]N = \frac{120}{3 \times 10^{-7} \times 5000 }[/tex]
[tex]N = 0.008 \times 10^{7} = 80000[/tex]
Hence, 80000 loop needed to produce given induced emf.