Astronauts on a space station decide to use Earth's magnetic field to generate electric current. Earth's B→ field in this region has a magnitude of 3.0 × 10⁻⁷ T. They have a coil that rotates 90° in 1.2 s. The area inside the coil measures 5000 m².
Estimate the number of loops needed in the coil so that during that 90° turn it produces an average induced emf of about 120 V. Express your answer using two significant figures.

Respuesta :

Answer:

80000 loop needed to produce given induced emf.

Explanation:

Given :

Magnetic field [tex]B = 3 \times 10^{-7} T[/tex]

Area of coil [tex]A = 5000 m^{2}[/tex]

Average induced emf [tex]= 120V[/tex]

The magnetic flux Φ = [tex]N BA\cos \theta[/tex]

Where [tex]N=[/tex] No. of loop

From the faraday's law of electromagnetic induction,

Induced emf = [tex]-\frac{d\phi}{dt}[/tex]

Where minus sign represent lenz law.

                     [tex]= - \frac{dNBA \cos\theta}{dt}[/tex]

                     [tex]= N BA \sin \theta[/tex]

Here given in question [tex]\theta = 90[/tex], so [tex]\sin90 = 1[/tex]

Induced emf = [tex]NBA[/tex]

                [tex]N = \frac{120}{3 \times 10^{-7} \times 5000 }[/tex]

                [tex]N = 0.008 \times 10^{7} = 80000[/tex]

Hence, 80000 loop needed to produce given induced emf.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE