In XYZ, X = 8.3 meters, y = 9 meters, and z = 15 meters. Find the remaining measurements of the triangle, and round your answers to the nearest tenth.


X = 56.9°, Y = 66.6°, Z = 56.5°

X = 28.6°, Y = 31.2°, Z= 120.2

X = 56.9°, Y = 66.6°, Z = 120.2°

X = 28.6°, Y = 31.2°, Z = 56.5°

Respuesta :

Answer:

The correct option is Second one X = 28.6°, Y = 31.2°, Z= 120.2

Therefore,

∠X = 28.6° , ∠Y = 31.2°, and ∠Z =120.2°

Step-by-step explanation:

Given:

In Δ XYZ such that Sides opposite to ∠X, ∠Y, and ∠Z are

x = 8.3 meters

y = 9 meters

z = 15 meters,

To Find:

∠X = ? , ∠Y = ?, and ∠Z = ?

Solution:

Cosine Rule In XYZ is given as

[tex]\cos X =\dfrac{y^{2}+ z^{2}-x^{2}}{2\times y\times z}[/tex]

[tex]\cos Y =\dfrac{x^{2}+ z^{2}-y^{2}}{2\times x\times z}[/tex]

[tex]\cos Z =\dfrac{x^{2}+ y^{2}-z^{2}}{2\times x\times y}[/tex]

Substituting the given values in above formula we get

[tex]\cos X =\dfrac{9^{2}+ 15^{2}-8.3^{2}}{2\times 9\times 15}=0.8781\\\\X=cos^{-1}(0.8781)=28.6\°[/tex]

Similarly for Y

[tex]\cos Y =\dfrac{8.3^{2}+ 15^{2}-9^{2}}{2\times 8.3\times 15}=0.8549\\\\Y=cos^{-1}(0.8549)=31.2\°[/tex]

Similarly For Z

[tex]\cos Z =\dfrac{8.3^{2}+ 9^{2}-15^{2}}{2\times 8.3\times 9}=-0.5027\\\\Z=cos^{-1}(-0.5027)=120.2\°[/tex]

Therefore,

∠X = 28.6° , ∠Y = 31.2°, and ∠Z =120.2°

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE