[tex]1)\ 3(2x + 5) = 6x + 15\\\\2)\ 7(p + 3q) = 7p + 21q\\\\3)\ 3m(n - 2m) = 3mn - 6m^2\\\\[/tex]
Solution:
Given that,
We have to expand the brackets
Use distributive property,
a(b + c) = ab + bc
Multiply the number in front of parenthesis with each term inside the parenthesis and then add them together
1)
[tex]3(2x + 5) = 3 \times 2x + 3 \times 5\\\\3(2x + 5) = 6x+15[/tex]
-------------------------------------------------
2)
[tex]7(p + 3q) = 7 \times p + 7 \times 3q\\\\7(p + 3q) =7p + 21q[/tex]
----------------------------------------------------
3)
[tex]3m(n-2m) = 3m \times n - 3m \times 2m\\\\3m(n-2m) = 3mn - 6m^2[/tex]
Thus the given expressions are expanded using distributive property