Respuesta :

The length of the arc is 31.92 units

Explanation:

Given that the sector of a circle of radius 6 units.

The angle is given by [tex]\theta=305^{\circ}[/tex]

Arc length of the circle:

The arc length of the circle can be determined using the formula,

[tex]\ {arc\ length}=2 \pi r\left(\frac{\theta}{360}\right)[/tex]

where r = 6 and [tex]\theta=305^{\circ}[/tex]

Substituting the values, we have,

[tex]\ {arc\ length}=2 \pi (6)\left(\frac{305}{360}\right)[/tex]

Multiplying the numerator, we have,

[tex]\ {arc\ length}=\frac{3660 \pi}{360}[/tex]

Substituting [tex]\pi=3.14[/tex], we have,

[tex]\ {arc\ length}=\frac{3660(3.14)}{360}[/tex]

Multiplying the terms, we get,

[tex]\ {arc\ length}=\frac{11492.4}{360}[/tex]

Dividing, we get,

[tex]\ {arc\ length}=31.92 \ units[/tex]

Thus, the arc length of the circle is 31.92 units

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE