contestada

can someone please help me with this question What is the minimum value of the quadratic function f(x) = x² - 2x + 7

Respuesta :

minimum value of the quadratic function f(x) = x² - 2x + 7 is at x=1 & is (1, 6).

Step-by-step explanation:

Here we have ,  f(x) = x² - 2x + 7 or [tex]f(x) = x^2 - 2x + 7[/tex] . We need to find the minimum value of f(x) for which we need to differentiate it one time and equate it to zero . Value of x at which first differentiation of f(x) is zero will be the minimum value of function  . Let's solve this:

[tex]f(x) = x^2 - 2x + 7[/tex]

⇒ [tex]f(x) = x^2 - 2x + 7[/tex]

⇒ [tex]\frac{df(x)}{dx} = \frac{d(x^2 - 2x + 7)}{dx}[/tex]

⇒ [tex]\frac{df(x)}{dx} = \frac{d(x^2)}{dx} - \frac{d(2x)}{dx} + \frac{d(7)}{dx}[/tex]

⇒ [tex]\frac{df(x)}{dx} = 2x-2 = 0[/tex]

⇒ [tex]2x-2 = 0[/tex]

⇒ [tex]x =1[/tex]

Now, value of function at x=1 is :

[tex]f(x) = x^2 - 2x + 7[/tex]

⇒ [tex]f(x) = x^2 - 2x + 7[/tex]

⇒ [tex]f(1) = 1^2 - 2(1) + 7[/tex]

⇒ [tex]f(1) = 8- 2[/tex]

⇒ [tex]f(1) = 6[/tex]

Therefore, minimum value of the quadratic function f(x) = x² - 2x + 7 is at x=1 & is (1, 6).

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE