∠A and \angle B∠B are supplementary angles. If m\angle A=(3x-17)^{\circ}∠A=(3x−17)

and m\angle B=(2x-23)^{\circ}∠B=(2x−23)

, then find the measure of \angle B∠B.

Respuesta :

The measure of angle B is 65°

Explanation:

Given that ∠A and ∠B are supplementary angles.

The measures are ∠A = (3x - 17)° and ∠B = (2x-23)°

The value of x:

Since, supplementary angles add up to 180°, then we have,

[tex]\angle A+ \angle B=180^{\circ}[/tex]

Substituting the values, we have,

[tex]3x-17+2x-23=180[/tex]

               [tex]5x-40=180[/tex]

                       [tex]5x=220[/tex]

                        [tex]x=44[/tex]

Thus, the value of x is 44

Measure of angle B:

Let us determine the measure of angle B by substituting the value of x in ∠B = (2x-23)°

Thus, we have,

[tex]\angle B=(2(44)-23)^{\circ}[/tex]

[tex]\angle B=(88-23)^{\circ}[/tex]

[tex]\angle B=65^{\circ}[/tex]

Thus, the measure of angle B is 65°

Answer:

65

Step-by-step explanation:

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE