Respuesta :

Answer:

[tex]( - 2 {x}^{4} {y}^{ - 3} )^{4} = \frac{16 {x}^{16}}{ {y}^{12} } [/tex]

Step-by-step explanation:

We want to simplify:

[tex]( - 2 {x}^{4} {y}^{ - 3} )^{4} [/tex]

We need to apply the exponential property for products of powers.

Recall that:

[tex]( {a}^{m} \times {a}^{n} )^{p} = {a}^{mp} \times {a}^{np} [/tex]

We apply this rule to get:

[tex]( - 2 {x}^{4} {y}^{ - 3} )^{4} = ( { - 2)}^{4} x \times {x}^{16} \times {y}^{ - 12} [/tex]

This simplifies to:

[tex]( - 2 {x}^{4} {y}^{ - 3} )^{4} = 16 {x}^{16} \times {y}^{ - 12} [/tex]

We rewrite as positive index to get:

[tex]( - 2 {x}^{4} {y}^{ - 3} )^{4} = \frac{16 {x}^{16}}{ {y}^{12} } [/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE