Respuesta :
[tex]7\sqrt{3}- 4\sqrt{6} + \sqrt{48} - \sqrt{54}[/tex] simplified as [tex]11\sqrt{3}- 7\sqrt{6}[/tex] or [tex]1.909[/tex] .
Step-by-step explanation:
We need to Simplify seven square root of three end root minus four square root of six end root plus square root of forty eight end root minus square root of fifty four. Which is equivalent to [tex]7\sqrt{3}- 4\sqrt{6} + \sqrt{48} - \sqrt{54}[/tex] :
[tex]7\sqrt{3}- 4\sqrt{6} + \sqrt{48} - \sqrt{54}[/tex]
⇒ [tex]7\sqrt{3}- 4\sqrt{6} + \sqrt{48} - \sqrt{44}[/tex]
⇒ [tex]7\sqrt{3}- 4\sqrt{6} + \sqrt{16(3)} - \sqrt{9(6)}[/tex]
⇒ [tex]7\sqrt{3}- 4\sqrt{6} + 4\sqrt{(3)} - 3\sqrt{(6)}[/tex]
⇒ [tex]11\sqrt{3}- 4\sqrt{6}- 3\sqrt{(6)}[/tex]
⇒ [tex]11\sqrt{3}- 7\sqrt{6}[/tex]
[tex]\sqrt{3} = 1.732 , \sqrt{6} = 2.449[/tex]
⇒ [tex]11(1.723)- 7(2.449)[/tex]
⇒ [tex]1.909[/tex]
Therefore, [tex]7\sqrt{3}- 4\sqrt{6} + \sqrt{48} - \sqrt{54}[/tex] simplified as [tex]11\sqrt{3}- 7\sqrt{6}[/tex] or [tex]1.909[/tex] .
Answer:
11√3 - 7√6
Step-by-step explanation:
I took the test and got it right.