(f+g)(x) is [tex](5x^2+6x-1)[/tex] .
Step-by-step explanation:
Here we have , f(x)=3x^2+7x and g(x)=2x^2-x-1 or [tex]f(x)=3x^2+7x , g(x)=2x^2-x-1[/tex] . We need to find (f+g)(x) :
We know that (f+g)(x) = f(x)+g(x) as sum of functions is equivalent to normal addition in Arithmetic . Let's find out (f+g)(x):
[tex](f+g)(x)[/tex]
⇒ [tex](f+g)(x)[/tex]
⇒ [tex]f(x)+g(x)[/tex]
⇒ [tex](3x^2+7x)+(2x^2-x-1)[/tex]
⇒ [tex](3x^2+2x^2+7x-x-1)[/tex]
⇒ [tex](5x^2+6x-1)[/tex]
Therefore, f(x)=3x^2+7x and g(x)=2x^2-x-1 or [tex]f(x)=3x^2+7x , g(x)=2x^2-x-1[/tex] and (f+g)(x) is [tex](5x^2+6x-1)[/tex] .