Answer:
(a) Angular speed of resultant combination will be rev/min
(b) Fraction of total energy loss will be 0.9
Explanation:
We have given angular speed of the first wheel [tex]\omega _1=440rev/min[/tex]
According to question moment of inertia of second wheel is 9 times the moment of inertia of first wheel
So [tex]I_2=9I_1[/tex]
(a) Now according to law of conservation of angular momentum
[tex]I_1\omega _1=(I_1+I_2)\omega _2[/tex]
[tex]I_1\times 440=(I_1+9I_1)\omega _2[/tex]
[tex]\omega _2=44rev/min[/tex]
(b) Change in rotational kinetic energy will be equal to [tex]\frac{KE_i-KE_f}{KE_i}[/tex].......eqn1
[tex]KE_I=\frac{1}{2}I_1\times 440^2[/tex]
[tex]KE_f=\frac{1}{2}10I_1\times 44^2[/tex]
Putting these values in eqn 1
Change in kinetic energy will be 0.9