Answer:[tex]47586 cm^{3}[/tex]
Step-by-step explanation:
Let's model the beach ball as a sphere, whose circumference is [tex]C=141.3 cm[/tex] and is calculated by:
[tex]C=141.3 cm=2 \pi r[/tex] (1)
From there we can find the radius [tex]r[/tex]:
[tex]r=\frac{141.3 cm}{2 \pi}[/tex] (2)
[tex]r=22.48 cm[/tex] (3)
Now, the volume [tex]V[/tex] of a sphere is given by:
[tex]V=\frac{4}{3} \pi r^{3}[/tex] (4)
Substituting (3) in (4):
[tex]V=\frac{4}{3} \pi (22.48 cm)^{3}[/tex] (5)
Finally:
[tex]V=47585.81 cm^{3} \approx 47586 cm^{3}[/tex] This is the volume of the beach ball.