Respuesta :

Answer:

Therefore, the average rate of change is 2.

Step-by-step explanation:

The  average rate of change  of for [tex]f(x) = 2x - 12[/tex] over the interval [tex]4 \leq x \leq 8[/tex] will be the slope of the  secant line  connecting the 2 points.

To calculate the average rate of change  of f(x) on the interval [a, b] is:

[tex]\frac{f\left(b\right)-f\left(a\right)}{b-a}[/tex]

as

[tex]f\left(4\right)\:=\:2\left(4\right)\:-\:12[/tex]

        [tex]=-4[/tex]

[tex]f\left(8\right)\:=\:2\left(8\right)\:-\:12[/tex]

        [tex]=16-12[/tex]

        [tex]=4[/tex]

The average rate of change between (4, -4) and (8, 4) will be:

 [tex]\frac{f\left(b\right)-f\left(a\right)}{b-a}[/tex]

[tex]=\frac{4-\left(-4\right)}{8-4}[/tex]

[tex]=\frac{4+4}{8-4}[/tex]

[tex]=\frac{8}{4}[/tex]

[tex]=2[/tex]

Therefore, the average rate of change is 2.

Answer:

It is C.

Step-by-step explanation:

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE