Respuesta :

Answer:

see explanation

Step-by-step explanation:

Calculate the length of EG in the right triangle using Pythagoras' identity

EG² + 6² = 8²

EG² + 36 = 64 ( subtract 36 from both sides )

EG² = 28 ( take the square root of both sides )

EG = [tex]\sqrt{28}[/tex] = [tex]\sqrt{4(7)}[/tex] = 2[tex]\sqrt{7}[/tex]

--------------------------------------------

tanF = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{EG}{GF}[/tex] = [tex]\frac{2\sqrt{7} }{6}[/tex] = [tex]\frac{\sqrt{7} }{3}[/tex]

---------------------------------------------

sec E = [tex]\frac{1}{cosE}[/tex]  and

cosE = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{EG}{EF}[/tex] = [tex]\frac{2\sqrt{7} }{8}[/tex], thus

secE = [tex]\frac{1}{\frac{2\sqrt{7} }{8} }[/tex] = [tex]\frac{8}{2\sqrt{7} }[/tex] = [tex]\frac{4}{\sqrt{7} }[/tex] ← rationalise the denominator

secE = [tex]\frac{4}{\sqrt{7} }[/tex] × [tex]\frac{\sqrt{7} }{\sqrt{7} }[/tex] = [tex]\frac{4\sqrt{7} }{7}[/tex]

-------------------------------------------------

cosF = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{FG}{EF}[/tex] = [tex]\frac{6}{8}[/tex] = [tex]\frac{3}{4}[/tex]

Answer:

[tex]tan[/tex] [tex]F[/tex] = [tex]\frac{\sqrt{7} }{3}[/tex]

[tex]sec[/tex] [tex]E[/tex] = [tex]\frac{4\sqrt{7} }{7}[/tex]

[tex]cos[/tex] [tex]F[/tex] = [tex]\frac{3}{4}[/tex]

Step-by-step explanation:

Because ∠G is a right angle, we know that the hypotenuse will be drawn from the two legs and will not touch ∠G.

E

|   \

|       \   8

|           \

G-----------F

     6

Using Pythagorean Theorem, we find that EG = [tex]2\sqrt{7}[/tex]  

[tex]tan[/tex] [tex]F[/tex] = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{2\sqrt{7} }{6}[/tex]

[tex]tan[/tex] [tex]F[/tex] = [tex]\frac{\sqrt{7} }{3}[/tex]

[tex]sec[/tex] [tex]E[/tex] = [tex]\frac{Hypotenuse}{Adjacent}[/tex] = [tex]\frac{8}{2\sqrt{7} }[/tex]

[tex]sec[/tex] [tex]E[/tex] = [tex]\frac{4\sqrt{7} }{7}[/tex]

[tex]cos[/tex] [tex]F[/tex] = [tex]\frac{Adjacent}{Hypotenuse}[/tex] = [tex]\frac{6}{8}[/tex]

[tex]cos[/tex] [tex]F[/tex] = [tex]\frac{3}{4}[/tex]

~Hope this helps!~

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE