Answer:
[tex]AB=\sqrt{137}[/tex]
Step-by-step explanation:
The Distance between two points in coordinate geometry can be find by the Distance formula:
If two points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are given:
[tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
For points [tex]A(-3,5)[/tex] and [tex]B(8,1)[/tex]
[tex]Distance (AB)=\sqrt{(8-(-3))^2+(1-5)^2}\\\\ Distance(AB)=\sqrt{(8+3)^2+(1-5)^2}\\\\Distance(AB)=\sqrt{11^2+(-4)^2}\\\\ Distance(AB)=\sqrt{121+16} \\\\AB=\sqrt{137}[/tex]
The Distance of points is [tex]AB=\sqrt{137}[/tex]