Answer:
Base radius: [tex]r=\sqrt{6.45}[/tex]
Step-by-step explanation:
Considering the cone is Right Circular Cone:
Volume of the cone = [tex]\pi *r^2*\frac{h}{3}[/tex]
[tex]r=radius \\\\h=height[/tex]
Given :
[tex]Volume=54\\\\Height =8[/tex]
Putting in the formula:
[tex]54=3.14*r^2*\frac{8}{3} \\\\ 54=\frac{25.12}{3} *r^2[/tex]
Multiply by '3' both sides:
[tex]54*3=25.12*r^2\\\\162=25.12*r^2[/tex]
Divide by '25.12' both sides:
[tex]r^2=\frac{162}{25.12}[/tex]
[tex]r^2=6.45[/tex]
[tex]r=\sqrt{6.45}[/tex]
So, the cone has base radius: [tex]r=\sqrt{6.45}[/tex]