Respuesta :

Answer:

[tex](3,0)[/tex]

[tex](\frac{-9}{5},\frac{12}{5})[/tex]

Step-by-step explanation:

Let's expand both sides.

I'm going to use the following identity to expand the binomial squared expressions: [tex](u+v)^2=u^2+2uv+v^2[/tex] or [tex](u-v)^2=u^2-2uv+v^2[/tex].

Left-hand side:

[tex](x-a)^2+(2x-b)^2[/tex]

[tex](x^2-2ax+a^2)+((2x)^2-2b(2x)+b^2)[/tex]

[tex]x^2-2ax+a^2+4x^2-4bx+b^2[/tex]

Reorder so [tex]x^2[/tex]'s are together and that [tex]x[tex]'s are together.

[tex](x^2+4x^2)+(-2ax-4bx)+(a^2+b^2)[/tex]

[tex]5x^2+(-2a-4b)x+(a^2+b^2)[/tex]

Right-hand side:

[tex](x-3)^2+(2x)^2[/tex]

[tex]x^2-2(3)x+9+4x^2[/tex]

[tex]x^2-6x+9+4x^2[/tex]

Reorder so [tex]x^2[/tex]'s are together and that [tex]x[tex]'s are together.

[tex](x^2+4x^2)+(-6x)+9[/tex]

[tex]5x^2-6x+9[/tex]

Now let's compare both sides.

If we want both sides to appear exactly the same we need to choose values [tex]a[/tex] and [tex]b[/tex] such the following are true equations:

[tex]-2a-4b=-6[/tex]

[tex]a^2+b^2=9[/tex]

So if we solve the system we can find the values [tex]a[/tex] and [tex]b[/tex] such that the left=right.

Let's solve the first equation for [tex]a[/tex] in terms of [tex]b[/tex].

Add [tex]2a[/tex] on both sides:

[tex]-4b=-6+2a[/tex]

Divide both sides by -4:

[tex]b=\frac{-6+2a}{-4}[/tex]

Reduce (divide top and bottom by -2):

[tex]b=\frac{3-a}{2}[/tex]

Now let's plug this into second equation:

[tex]a^2+b^2=9[/tex]

[tex]a^2+(\frac{3-a}{2})^2=9[/tex]

[tex]a^2+\frac{9-6a+a^2}{4}=9[/tex] (I used the identity [tex](u-v)^2=u^2-2uv+v^2[/tex])

Multiply both sides by 4 to clear the fractions from the problem:

[tex]4a^2+(9-6a+a^2)=36[/tex]

Combine like terms on left hand side:

[tex]4a^2+a^2-6a+9=36[/tex]

[tex]5a^2-6a+9=36[/tex]

Subtract 36 on both sides:

[tex]5a^2-6a-27=0[/tex]

Now let's try to factor.

We are going to try to find two numbers that multiply to be 5(-27) and add to be -6.

5(-27)=(5*3)(-9)=15(-9)=-15(9) while -15+9=-6.

So let's replace [tex]-6a[/tex] with [tex]-15a+9a[/tex] and factor by grouping.

[tex]5a^2-15a+9a-27=0[/tex]

[tex]5a(a-3)+9(a-3)=0[/tex]

[tex](a-3)(5a+9)=0[/tex]

This implies [tex]a-3=0[/tex] or [tex]5a+9=0[/tex].

Solving the first is easy. Just ad 3 on both sides to get: [tex]a=3[/tex].

The second requires two steps. Subtract 9 and then divide by 5 on both sides.

[tex]5a=-9[/tex]

[tex]a=\frac{-9}{5}[/tex].

So let's go back to finding [tex]b[/tex] now that we know the [tex]a[/tex] values.

If [tex]a=3[/tex] and [tex]b=\frac{3-a}{2}[/tex],

then [tex]b=\frac{3-3}{2}=0[/tex].

So one ordered pair [tex](a,b)[/tex] that satisfies the equation is:

[tex](3,0)[/tex].

If [tex]a=\frac{-9}{5}[/tex] and [tex]b=\frac{3-a}{2}[/tex],

then [tex]b=\frac{3-\frac{-9}{5}}{2}[/tex].

Let's multiply top and bottom by 5 to clear the mini-fraction.

[tex]b=\frac{15-(-9)}{10}[/tex]

[tex]b=\frac{24}{10}[/tex]

[tex]b=\frac{12}{5}[/tex]

So one ordered pair [tex](a,b)[/tex] that satisfies the equation is:

[tex](\frac{-9}{5},\frac{12}{5})[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE