Respuesta :

[tex]\bf (\stackrel{x_1}{-6}~,~\stackrel{y_1}{8})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{-7}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-7}-\stackrel{y1}{8}}}{\underset{run} {\underset{x_2}{3}-\underset{x_1}{(-6)}}}\implies \cfrac{-15}{3+6}\implies \cfrac{-15}{9}\implies -\cfrac{5}{3}[/tex]

[tex]\bf \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{8}=\stackrel{m}{-\cfrac{5}{3}}[x-\stackrel{x_1}{(-6)}]\implies y-8=-\cfrac{5}{3}(x+6) \\\\\\ y-8=-\cfrac{5}{3}x-10\implies y = -\cfrac{5}{3}x-2[/tex]

Answer:

[tex]m=\frac{-5}{3}[/tex]

Step-by-step explanation:

Step 1: Let's find the slope between your two points.

[tex](-6,8); (3,-7)\\\\(x_{1} ,y_{1} )=(-6,8)\\\\(x_{2} ,y_{2} )=(3,-7)[/tex]

Step 2: Use the slope formula

[tex]m = \frac{y_{2} - y_{1} }{x_{2} - x_{1} }\\\\=\frac{(-7) - 8}{3- (-6)} \\\\=\frac{-15}{9}\\\\= \frac{-5}{3}[/tex]

Therefore, the equation is [tex]\frac{-5}{3}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE