Answer:
a) 28.8°
b) 30.9°
c) 1:04pm
Explanation:
We are given
T_o = 23
M = 34
H(t) = u(t) = 0
Time = 1/k =4
Let's use the formula:
[tex] T(t)=M + Ce^-^t^/^4[/tex]
Therefore
T(t) = 34 + Ce°
[tex] 23 = 34 + Ce^-^t^/^4[/tex]
23 = 34 + Ce°
C = 23 -34
C = -11
To solve for
a) at 3pm we have:
[tex]T(3) = 34 - 11e^-^3^/^4[/tex]
T(3) =28.8°
b) at 5pm =
[tex]T(5) = 34 - 11e^-^5^/^4[/tex]
T(5) = 30.9°
c) To find Temprature at 27°
T(t) = 27
[tex]27=34 - 11e^-^t^/^4[/tex];
[tex]-11e^-^t^/^4 = 27-34[/tex];
[tex]-11e^-^t^/^4 = -7[/tex];
[tex]e^-t^/^4 =7/11[/tex];
-t/4 = In 7/11
t = -4 In 7/11
t = 1.08
1.08 hours after noon =
1.08 *60 mins = 64.8mins after noon
= 64.8 mins + 12:00
= 1:04pm